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The paper deals with the problem of two-dimensional oscillating viscous flow past an elliptic
cylinder. The flow is considered incompressible and two-dimensional, and the free-stream
oscillations are harmonic. These oscillations are only allowed in the magnitude of the free-
stream velocity, which is always parallel to one of the elliptic section axes. The resulting flow
field is symmetrical about either the major or minor axis of the ellipse. The parameters involved
are the cylinder axis ratio, Reynolds number and the oscillation frequency. The major-minor
axis ratio of the elliptic cylinder ranges between 0-5 and 0-8, the Reynolds number ranges
between 500 and 103, and the frequency parameter ranges between m/4 and m/2. Present
calculations are performed within the range of sufficiently large oscillation amplitude to induce
separation. The time variation of the flow field is presented in the form of streamline patterns as
well as the surface pressure distribution. The time variation of the drag coeflicients is also
presented and compared with the inviscid flow solution. The results show that the force
coefficient predicted for the case of viscous flow approaches that of potential flow as the
Reynolds number and frequency increase. © 1997 Academic Press Limited

1. INTRODUCTION

ORIGINALLY, interest in oscillatory flow of a viscous fluid past cylinders and spheres centred
on application of the results to the design of vertical piles subjected to ocean waves.
However, more recent interest covers a wider area and includes the prediction of wave-
induced forces on ocean structures of all shapes such as habitats, oil-storage tanks,
space-frame structures in fixed or floating platforms, etc. In this paper we study two-
dimensional symmetric flow generated by an elliptic cylinder placed in an oscillatory flow
environment of infinite extent. The cylinder with major and minor axes lengths 2a and 2b,
respectively, is at rest in a flow whose oscillations are represented by U cos wt*. Here t* is
the time and o is the frequency of oscillation. Translational oscillations are allowed only
about an axis which coincides with either the major or minor axis of the ellipse. The motion
is assumed to be governed by the Navier-Stokes equations for an incompressible fluid and
the flow is laminar. We shall take axes fixed with the origin at the centre of the cylinder and
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regard the fluid as oscillating. The three basic parameters involved in this problem are the
major-minor axis ratio, b/a, the Reynolds number defined as Re = U(2a)/v, where v is the
fluid kinematic viscosity, and the reduced frequency ¢, defined as « = aw/U. This reduced
frequency is related to the Keulegan-Carpenter number, KC, by KC = n/o.

There are numerous theoretical, numerical and experimental investigations on transla-
tional oscillatory flows about cylinders of circular cross-section. The most recent studies on
translational oscillatory flows around a circular cylinder have been made by Zhang
& Dalton (1993), Badr et al. (1995a) and Badr et al. (1995b). In the work by Zhang & Dalton
(1993), numerical solutions were obtained for viscosity-dominated oscillating flow past
a rigid cylinder considering sinusoidal and nonsinusiodal oscillations. A very good agree-
ment was found between the calculated and experimental force coefficients in the case of
sinusoidal oscillations. Badr et al. (1995b) conducted a numerical study on the transient
flow field caused by a circular cylinder placed in an unbounded viscous fluid oscillating in
a direction normal to the cylinder axis. Numerical solutions were obtained for large values
of time for both moderate and high Reynolds numbers. The accuracy of the numerical
scheme was verified by comparing the results with those obtained from the analytical
solution of Badr et al. (1995a) at small times. A useful review of oscillating flows of this type
is provided by Riley (1967) and Sarpkaya(1979); see also Badr et al. (1995b) and Nguyen
& Kocabiyik (1996).

There has been some interest in carrying out the calculations for elliptic cylinders, since
these include the problems of the circular cylinder and flat plate as limiting cases. For
oscillatory flows about elliptic cylinders, references may be made only to the works of
Davidson & Riley (1972), Taneda (1977), Badr (1994a, b) and Riley & Wybrow (1995).
Davidson & Riley (1972) have studied the periodic, but not purely harmonic, transverse
motion of elliptic cylinders both theoretically and experimentally. In their work a complete
numerical integration of boundary-layer equations for a class of elliptic cylinders has been
performed to trace the origin of the time-averaged, thin jet-like flow which emerges along
the axis of oscillation. Davidson & Riley also visualized and made measurements of these
jet-like flows. Taneda (1977) visualized the streamline patterns in the case of an elliptic
cylinder oscillating in a quiescent fluid for a cylinder axis ratio 0-5 at 30° incidence. The
experiment was carried out for Reynolds numbers of 48 and 144 only.

Badr (1994a) considered oscillating inviscid flow over elliptic cylinders. In this work,
analytical expressions are given for the drag coefficient, the lift coefficient, and their
variation with time. Similar analytical expressions are also given in Badr’s work for the
special cases of circular cylinders and inclined flat plates in oscillating inviscid flows. Badr
(1994b) was the first to study the problem of oscillating viscous flow over an elliptic cylinder
for an angle of attack 2 = 30° or 60°. In his work, oscillations were harmonic and the flow
direction was normal to the cylinder axis. Badr (1994b) carried out a very careful numerical
study to calculate the flow properties for a cylinder axis ratio of 0-6 when the Reynolds
number ranges between 10% and 103, His calculations were performed within the range of
sufficiently large oscillation amplitude to induce separation. In Badr’s work more emphasis
is placed on the governing equations and the accuracy of the method of solution, with
applications to a limited number of cases. Riley & Wybrow (1995) considered the fluid
motion induced when an elliptic cylinder performs small-amplitude torsional oscillations
about an axis parallel to a generator which passes through either the centre or a point on
the major or minor axis of the ellipse. Their work focuses on the acoustic streaming, or
time-averaged flow, and several unusual and unexpected features of steady streaming were
confirmed by experiments.
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This paper aims to study the problem of symmetrically oscillating viscous flow over an
elliptic cylinder for the two cases when the axis of the translational oscillation coincides
with either the major or minor axis of the ellipse. Particular interest is focused on the effect
of Reynolds number and oscillation frequency on the deviation from the analytical solution
of the force coefficients for the inviscid flow case. The details of the vortex structure
(including vortex formation and decay) and its relation to the accelerating and decelerating
flow periods are also investigated for the two flow configurations. The problem is solved for
Reynolds number ranging from 200 to 103, and for two values of the reduced frequency (r/4
and 7/2) when the major-minor axis ratio ranges between 0-5 and 0-8. Results obtained for
surface pressure distribution and the time variation of the in-line and transverse force
coefficients are compared with an analytical solution of the inviscid flow problem. The
results of this study are of theoretical and practical importance, since it adds to the
knowledge of the mechanism of vortex formation and decay and is directly related to several
engineering applications.

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION

At time t =0, the viscous incompressible fluid surrounding an infinitely long elliptic
cylinder suddenly starts to oscillate along an axis of symmetry. The free stream, far away
from the cylinder surface, exhibits harmonic oscillations in the horizontal direction. The
direction of fluid motion is always normal to the cylinder axis. Attention is focused upon
two particular situations, both of which involve an elliptic cylinder of major and minor axes
2a and 2b. In the first, the x and y coordinates are along the major and minor axes whereas
in the second, the x and y coordinates are along the minor and major axes. Using the elliptic
coordinates (¢, i), the appropriate transformation is

x = ¢ cosh & cosy, y = csinh € sin gy

where ¢ = ¢*/a = sec &,. Here c* is the dimensional focal distance and &, = tanh™'(b/a)
defines the surface of the cylinder. The motion is two-dimensional and may be described in
terms of the usual two simultaneous equations satisfied by the stream function and the
scalar vorticity. If * and {* are the dimensional stream function and vorticity associated
with the motion, we introduce the dimensionless functions i and { defined by the equations,

y*=Uay and (*=— Ul/a

The dimensionless velocity components (v, v,) in the directions of increase of £ and 7 are
given by

Ly 1y "

V-ﬁ:Wa—nu Vi HI/Za_é

and the function ¢ is defined by
110 0
Czﬁ[a_n(Hl/zvf)_a_g(HmV")} 2

Here ¢ and { satisfy the unsteady Navier-Stokes equations,

o 2 0% 0% oy ol oy ol
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where t is the dimensionless time defined by t= Ut*/a and H = c?*(cosh 2¢& —
cos 2n)/2.

The boundary conditions are simply the no-slip and impermeability conditions at the
solid surface, and the free-stream conditions far away from it which may be stated as

0
1//=a—l/g=0 when ¢ =¢ (5)
o £ oy ¢
& _2 Yl _
FE —>2e sin(n ) cos at, o —>2 e°cos(n — A)cosat as &— oo (6)

Here the flow oscillation enters through the reduced frequency o = aw/U. More details
about equations (3—6) are given by Badr (1994b). The present study focuses only on the two
symmetric flow cases: 1 = 0 and 4 = 90°. In the case without inclination (4 = 0) the flow is
symmetric about the major axis, whereas in the second (1 = 90°) the flow is symmetric
about the minor axis. In the present analysis the calculations are carried out on the basis of
the method of solution adopted by Badr (1994b) in which the functions  and { were
expressed in the form of Fourier series

N
Z [f.(& ) sinny + Fo(&, t) cosnn], ¢ = Z [g.(& 1) sinng + G,(&, t) cosnn]
) . (7a,b)

In the case of symmetrical flow about the major axis, the functions F,(¢, t) and G, (&, t) are
identically zero in (7); whereas in the case of symmetrical flow about the minor axis, the
functions f5,-1(&, 1), F2,(&, 1), gap—1(E, 1) and G,,(E, ¢) for all integers p > 1, are identically
zero in (7). This is due to the fact that in the first case the flow is symmetric about = 0,
whereas in the second the flow is symmetric about # = 90°. The equations governing the
functions in (7a, b) can be obtained by substitution in (3) and (4). They have been given by
Badr (1994b) and their solution is required in the present case subject to the conditions

of, JF,
ﬁ':é_Q:F” 6’ =0 when ¢=¢, (8a)
Ggn, G, >0 as ¢—o o0 (8b)
fu —>§ 5,1€% cos A cos ot, 6); —— 3 Spe°cosdcosat as ¢ — oo (8c)
. oF, .
F,— —génle‘: sin A cos at, o - —génle‘f sinAcosat as & — o (8d)

Here 6, is the Kronecker delta symbol defined by 6, =1ifn=1,and 6,; =0ifn # 1.
It may be shown that conditions (8) can be combined to give a further set of conditions of
global type, namely

J [<§ cosh 25) Gn — %(sgn(n —2)Gjn— 2 + g,,+2)} e "d¢é =4,  cosAcosat  (9a)

J [(% cosh 25) G, —% oo + G,,H)] e~ dE = — 0, sin L cosat (9b)



OSCILLATING VISCOUS FLOW OVER ELLIPTIC CYLINDER 749

In the initial stages of the motion, the boundary-layer coordinate x can be introduced by
the transformation,

E=¢y+kx, k=202t/Re)'?, t=t (10)

This is employed to transform all the appropriate equations with the scaling of the
variables,

Gy
79

ok g
fo=KGE, ga == (11)

F,=kF}¥, G,=
k

Here k denotes the growth of the boundary-layer structure of the initial flow (small time).
This change of variables stretches the thin boundary-layer and scales the stream function
and vorticity so that they are of order unity. This transformation has been used by several
authors, some of whom include Collins & Dennis (1973), Badr & Dennis (1985), Badr
(1994b), Badr et al. (1995a, b), Nguyen & Kocabiyik (1996). It is noted that the physical
coordinate ¢ =¢, + kx is a moving coordinate, and hence the outer boundary
Emax = Eo + kxmay 1s constantly being pushed further away from the cylinder surface at
a rate which reflects the growth of the boundary-layer. For this reason we are justified in
saying that the vorticity, by the mechanism of convection, does not reach the outer
boundary &,..,. Here, ., refers to the outer boundary approximating infinity.

3. NUMERICAL INTEGRATION PROCEDURE

The numerical method implemented to calculate the flow for any Reynolds number and
large enough time is similar to that outlined in Badr (1994b) and will briefly be described. In
this method, the velocity of the free stream starts suddenly from rest at time t = 0.
Immediately following the start of fluid motion, a very thin boundary layer develops over
the cylinder surface and grows with time. Accordingly, the solution time is divided into two
distinct zones. The first zone begins following the start to fluid motion and continues until
the boundary layer becomes thick enough to use the elliptic coordinates (&, ). In this zone
the boundary-layer coordinates are used, which are appropriate to the flow-field structure,
in order to obtain a highly accurate numerical solution. The second zone starts following
the first one and continues until the termination of calculations.

The governing equations and the boundary and integral conditions (8) and (9) are first
transformed to the coordinate system (10). To initiate the integration procedure, the initial
solution obtained by Staniforth (1972) at t = 0 is used, after some modification to suit the
dimensionless variables used in this work. This initial solution is given by

: \ 1 CHoa
Y* = ebosin(y — 1) |:x erf(Hy?x) + TR (e Ho — 1)] (12a)
et S
* = YT sin(y — 2)e ™ Hox (12b)

where H, = 3(cosh 2, — cos 2#). The use of the initial solution (12) is essential for obtain-
ing accurate results at small times. An implicit method of the Crank-Nicolson type is used
to integrate the governing equations in time, following the work by Badr (1994b). The
solution procedure requires knowledge of the surface vorticity distribution. The integral
conditions (9) are used to calculate the values of the functions g, and G, on the cylinder
surface (& = ;) from which the required surface vorticity distribution can be obtained at
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every time step. Following the start of fluid motion, very small time steps (4t = 10~ %) are
taken, since the time variation of the vorticity field is quite fast. However, as time increases,
the time step was gradually increased until it reached At = 0-05. The number of points in
the & direction is taken as 101 with a space step of A& = 0-1. This makes ¢,,,, = o + 10,
which sets the outer boundary at a physical distance of more than 10* times the focal
distance. Such a far-away boundary ensures that the application of boundary conditions
(8a)—(8d) does not affect the solution in the viscous region near the cylinder surface. The
number of terms in the series (7a) and (7b) starts with 15 at t = 0 and more terms are added
as time increases. One more term is added at a time when the last term in the series reaches
a maximum value of 10~ %, For the range of Reynolds number considered in this paper,
a maximum of 30 terms is found adequate over the large time range of calculations.

4. RESULTS AND DISCUSSION

The variation of drag coefficients with time is calculated both from the viscous flow and
inviscid flow solutions. It may be noted that the present analysis uses the analytical
expressions for the surface pressure and drag coefficient obtained by Badr (1994a) in the
case of oscillating inviscid flow. A dimensionless drag coefficient Cj, is defined by

D
Cop=17—5—
3pU¢(2a)
where D is the total drag on the cylinder. The above expression can be split into two parts,
one due to frictional forces and the other due to pressure forces. The resulting coefficients

can be expressed in terms of the Fourier functions as

2n .
Cpr = Re [(cos 4)g; — tanh &y (sin 2)G 1], (13a)
2 oG 0
Cor =7 [@m 7)75g — tanh Eo(cos “aiéllo (13b)

where Cpr and Cpp are the frictional and pressure components of the drag coefficient
respectively. The inviscid flow properties can be obtained by solving the unsteady Euler
equation for the special case under consideration in which the free-stream velocity changes
according to U cos wt*. The inviscid force coefficient given by Badr (1994a) is in the form

noe’o sin ot

[tanh &, cos? A + sin? 4] (14)
cosh &,

Cp(&o, 4, 0, 1) =

The calculated values of Cpr and Cp based on expressions (13) and (14) are plotted in
Figures 1-3 for comparison with inviscid flow when the flow is symmetric about either the
major axis (4 = 0) or the minor axis (A = 90°). The variation of C, with time for the cases of
Re = 500, b/a = 0-8, & = n/4, m/2 and Re = 103, b/a = 0-8, o = n/4, /2 are shown in Figures
1 and 2.

These figures show that the contribution of frictional forces to the total drag coefficient
C) is relatively small. They also show that the phase difference between the viscous and
inviscid flow solutions is small at the start of the motion and increases with the increase of
time. The reason for this is that the flow field away from the cylinder is vortex-free at small
times. As time increases, vortices are shed away from the cylinder, causing changes in the
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Figure 1. The time variation of Cpr and Cj, following the start of oscillating flow; case of Re = 500, b/a = 0-8,

A =0°when (a) 2 = n/4 and (b) & = ©/2: ——, Cp, present study; ..., Cpp [equation (13a)];— —

flow [equation (14)].

—, Cp for potential
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Figure 2. The time variation of Cpy and Cj, following the start of oscillating flow; case of Re = 103, b/a = 0-8,
A =0°when (a) « = /4 and (b) & = 7/2: ——, Cp present study; ... , Cpr [equation (13a)];— — —, Cp for potential
flow [equation (14)].

flow-field structure. Such changes will cause the flow away from the cylinder to deviate from
the potential flow. Accordingly, one can assume that there are two dominating flow fields
affecting the boundary-layer region. The first is the potential flow field, while the second
(superimposed on the first) is that resulting from vertical motion. In the present problem the
second field has negligible effect at the start of fluid motion but with increasing influence as
time increases. Such a field continues to evolve with time until asymptotically approaching
a periodic behaviour at large time. The time variation of C; for the case of Re = 500,
b/a = 0-8 and o = n/4 is shown in Figure 3(a) when the free stream is parallel to the minor
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Figure 3(a). The time variation of Cpr and Cp, during two complete cycles following the start of oscillating flow
for the case of Re = 500, b/a = 0-8, 2 = 90° and o = n/4;——, Cp, present study; ..., Cpr [equation (13a)];— — —,
C), for potential flow [equation (14)].

(b)

CD and CDF
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Figure 3(b). The time variation of Cpr and Cp following the start of oscillating flow for the case of Re = 500,
b/a =05, 2=0° and o = n/2; ——, Cp present study; ..., Cpr [equation (13a)]; — — —, Cp for potential flow
[equation (14)].
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axis (A = 90°). Potential flow solutions for the same coefficient are shown in the figure.
Figures 1(b), 2(b) and 3(b) show a small difference between the values of Cj, obtained from
viscous and inviscid flow solutions. This is expected since the flow oscillations in this case
exhibit high frequency and a relatively low amplitude. The effect of both factors is simply an
increase of the inertia effect and a decrease in the size of the separated flow region. Both
effects will create a pressure field closer to that of potential flow.

In order to plot the surface pressure distribution, we introduce the dimensionless pressure
coefficient p*, defined as

pn_pn
3pU§

p*(n,7) =

It can be shown that the surface pressure for the viscous flow is given by

4 N1[0G d
pE(n, 1) = — Re {nzl - [ 6én sin ny — a—gé" (cos niy — cos nn}} (15)

following Badr (1994b). For inviscid flow, the surface pressure coefficient is deduced from
the analysis of Badr (1994a).

p*(n, 7) = 2ace® sin at[cos(n — A) + cos A] + e**(cos? at) F (i)

14.0

(a)

12.0

8.0
*
S8
4.0
0
4.0 1 | | | |
180 150 120 90 60 30 0
n

Figure 4(a). The surface pressure distribution at time t = 0-1, 0-25, 0-5, 1-0 following the start of the oscillating
flow for the case of re = 500, b/a = 0-8, A = 0° and o = n/2 and comparison with the potential flow solution: R
present study; ..., potential flow (Badr 1994a).
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(b)

~10 | 1 |
180 150 120 90 60 30 0
n
Figure 4(b). The surface pressure distribution during one quarter of a complete oscillation at times ¢t = 10, 10-5,
and 11 for the case of Re = 500, b/a = 0-5, A =0° and o = n/2: ——, present study; ..., potential flow (Badr
1994a).

where F(n) is given by

F(n) =

o \(cosh? &, — cos?y)?>  cosh? &, — cos?n

j" < sin?(n — A) sin 2y sin2(y — A) >d

The value of the function F(n) is to be calculated for any given angle # using numerical
integration. Figures 4(a) and 4(b) show the time variation of the pressure distribution for the
case of Re = 500, o = ©/2, and b/a = 0-8 and 0-5, respectively, when the flow is symmetric
about the major axis (4 = 0). On the same figures the corresponding inviscid flow solution
for the surface pressure distributions are also plotted. The comparison given in Figure 4(a)
shows a good agreement at early stages of the flow. Figure 4(b) shows the time variation
of the surface pressure distribution during one-quarter of a complete oscillation. It is



Figure 5. The streamline pattern during one complete oscillation for the case of Re = 103, b/a = 0-8, 4 = 0° and
o = m/4 at times (a) t = 80, (b) t = 9'5, (c) t = 100, (d) t = 12:0, (e) t = 13-0, (f) t = 13:8, (g) t = 14-0, (h) ¢t = 16:0.
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Figure 5. (Continued).

important to mention that the curve for t = 10 corresponds to U = U,,,, at which the
inertia effect is zero, and that for t = 11 corresponds to U = 0 at which the inertia effect is
maximum. As can be seen in Figure 4(b), the viscous and inviscid flow pressure distributions
are in good agreement over most of the cylinder surface at t = 11 (corresponding to zero
free-stream velocity and maximum inertia effect).

The instantaneous streamline patterns are plotted for the two cases of Re = 103,
b/a =08, o = n/4 and n/2 when the flow is symmetric about the major axis (1 = 0).
Figure 5 shows the time variation of the streamline pattern for the first case when ¢t varies
from 80 to 16:0. This gives the details of the flow field structure during the second
oscillation after the start of fluid motion. Figure 5(a) shows the streamlines when the free
stream is moving to the right at maximum velocity. The figure shows a pair of vortices
growing in the cylinder wake. One can see the growth of this vortex pair in the cylinder
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wake in Figure 5(b). Figure 5(c) shows the streamlines when the free-stream velocity is zero.
The large distances between streamlines far away from the cylinder reflect the very small
velocity there, while the fluid motion near the cylinder is dominated by vortical motion.
Figure 5(d) shows the situation when the free stream is moving to the left at maximum
velocity. The figure is very much the same as Figure 5(a), only turned through an angle of
180° since the free stream has completed one half-cycle of oscillation. Figures 5(e)-5(f) give
additional details of the flow structure as the free stream decelerates before reversing
direction at ¢t = 14-0. Figure 5(g), which shows the streamline pattern when the free-stream
velocity is zero, is very much the same as Figure 5(c) when turned through an angle of 180°.
Finally, Figure 5(h), which shows the flow field at the end of the second complete oscillation
(t = 16:0), is similar to the situation at the beginning of that oscillation (t = 8-:0) shown in
Figure 5(a). The minor differences between Figures 5(a) and 5(h) reflect the continuous
development of the flow field away from the cylinder because of the vortex shedding and
interaction with the free stream. This flow field has not yet become periodic and requires
a large number of oscillations before reaching the quasi-steady state.

The time variation of the streamline pattern for the case of Re = 103, b/a = 0-8, o = 7/2
when the flow is symmetric about the major axis (4 = 0) is shown in Figures 6(a)-(h) for
selected values of t between t = 80 and ¢t = 12:0. The chosen interval represents the third
complete oscillation following the start of fluid motion. Figures 6(a), 6(c) and 6(h) represent
the situation at the beginning, middle and end of the oscillation, respectively. The velocity of
the free stream is maximum in each of these figures. On the other hand, Figures 6(b) and 6(f)
represent the times at which the free-stream velocity is zero. Streamline patterns in Figure
6 show that vortices are formed in relatively small areas, leaving the rest of the flow
vortex-free. The repetitive nature of the flow field can be observed from the mirror image
resemblances between the diagrams for t = 8-0 and t = 10-0; t = 9-0 and t = 11-0. These are
given in Figures 6(a) and 6(c); 6(b) and 6(f). Since vortex shedding is restricted to a very
small region, the pressure distribution becomes very close to that of potential flow, which
explains the behaviour of Cp, presented in Figure 2(b). Figures 6(a) and 6(h) are almost the
same, showing the periodic variation of the flow field at t = 8-0 and ¢t = 12-0, respectively.

The instantaneous streamline patterns are plotted for the same of Re = 500, b/a = 0-§,
S = n/4 when the flow is symmetric about the minor axis (4 = 90°) in Figures 7(a)—(h) for
only selected values of ¢t between t = 8:0 and t = 16:0. This gives the details of the flow-field
structure during the second oscillation after the start of the motion. During the first quarter
of this cycle the free stream is moving to the right (see Figures 7(a, b)). In Figure 7(a) the
velocity of the free stream in maximum, whereas in Figure 7(c) free-stream velocity is zero.
Figure 7(d), at t = 12:0, shows the situation at the middle of the oscillation and the free
stream is moving to the right at maximum velocity. Figures 7(e) and 7(f) give additional
details of the flow structure as the free stream decelerates before reversing the direction at
t = 14-0. Figure 7(f), at t = 138, shows the streamline pattern before the free stream comes
to complete rest. Figure 7(g), at t = 14-0, represents the time at which the free-stream
velocity is zero. Finally, Figure 7(h) shows the flow field at the end of the second complete
oscillation (¢ = 16:0). The repetitive nature of the flow field can be observed from the mirror
image resemblances between the diagrams for ¢t = 80 and ¢t = 12:0; t = 10-0 and t = 14-0;
t = 12:0 and t = 16°0. These are given in Figures 7(a) and 7(d); 7(c) and 7(g); 7(d) and 7(h).
Figure 7(a) and 7(h) are almost the same, showing the periodic variation of the flow field at
t = 80 and t = 160, respectively; small deviations between the streamline patterns are due
to the fact that the numerical solution was not advanced far enough in time to achieve
a periodic flow field.



b)

(c)

Figure 6. The streamline pattern during one complete oscillation for the case of Re = 103, b/a = 0-8, 4 = 0° and
o = m/2 at times (a) t = 80, (b) t = 90, (c) t = 100, (d) t = 10-5, (e) t = 109, (f) t = 11-0, (g) t = 11-5, (h) ¢t = 12-0.






(a)

Figure 7. The streamline pattern during one complete oscillation for the case of Re = 500, b/a = 0-8, 1 = 90°
and o = 7/4 at times (a) t = 8:0,(b) t = 9-5,(c) t = 10:0,(d) t = 12:0,(e) t = 13:0,(f) t = 13-8,(g) t = 14-0,(h) t = 16:0.
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The accuracy of the method of solution and the numerical scheme used in this work is
checked by applying it to the problem of an elliptic cylinder starting its translational
constant velocity motion impulsively from rest in a fluid of infinite extent (this case
corresponds to o = 0 in the present study). Patel (1981) made a numerical study on the flow
development near an elliptic cylinder starting its motion impulsively, in the Reynolds
number range from 60 to 200. Honji (1972) carried out experiments on both asymmetric and
symmetric flow problems for the case of the impulsively started translating elliptic cylinder.
Figure 8 shows a comparison between the time variation of the dimensionless wake length,
L/c, obtained by using the present scheme and numerical results of Patel (1981) and also by
using flow visualization results of Honji (1972) in the case of symmetric flow about the
major axis (A = 0) when Re = 200, b/a = 0-588. The figure shows a good agreement between
the three sets of results.

Figure 9 shows a comparison between the time variation of C, obtained using the present
scheme and that obtained numerically by Patel (1981) in the case of symmetric flow about
the major axis (A =0) when Re =200, b/a = 0-588. It is important to note that the
discrepancy between the results of C;, at small times is due to the fact that Patel used
a potential flow solution as an initial condition, whereas the present study uses the exact
solution (12) as an initial condition. As mentioned earlier, the use of initial solution (12) is
essential for obtaining accurate results at small times. It is also noted that in Patel’s work no
measures were taken to ensure the periodicity of pressure.

Lle

Figure 8. The time development of the dimensionless wake length (L/c) for the case of Re =200, A = 0° and
b/a = 0-588; ——, present study; — — —, Patel (1981); A, Honji (1972).
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Figure 9. The time development of Cpr and C), following impulsive start of motion and comparison with Patel
(1981) for the case of Re (based on 2¢) = 200: , Cp; ..., Cpr [equation (13a)]; — — —, Cp, (Patel 1981).

5. CONCLUSIONS

Considered in this paper is the problem of oscillating viscous flow over a stationary elliptic
cylinder for Reynolds numbers of 200, 500 and 1000. Attention is focused upon only two
symmetric flow cases. In the first, flow is symmetric about the major axis whereas in the
second, flow is symmetric about the minor axis. The solution is based on a numerical
integration of the vorticity transport equation together with the stream function equation.
A boundary-layer coordinate system is used following the start of fluid motion to ensure
high accuracy at small times. Integral conditions were deduced and used in the numerical
scheme for accurate prediction of vorticity components at the solid boundary. The methods
of solution and numerical scheme are verified by applying them to the special case of an
elliptic cylinder starting its constant velocity motion impulsively from rest. The results are
compared with the documented translating case, and a good agreement is found.

The flow field development is first presented for the two cases of Re = 500 and 1000 in the
form of streamline patterns. The surface pressure distribution is also presented for a typical
case. The time variation of the drag coefficients are first presented for two values of
Reynolds number and compared with previously known analytical solutions for the
potential flow problem. Comparison between viscous and inviscid flow results show a better
agreement for higher values of Re and «. Although numerical results are only obtained for
harmonic oscillations, the method of solution presented can be applied to free-stream
oscillations of any prescribed form. Moreover, by taking small values of £,, the same
method can be used for investigating the interesting case of oscillating viscous flow over
a flat plate which may be approximated by a thin elliptic cylinder.
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